713 research outputs found

    Robust Quantum Error Correction via Convex Optimization

    Full text link
    We present a semidefinite program optimization approach to quantum error correction that yields codes and recovery procedures that are robust against significant variations in the noise channel. Our approach allows us to optimize the encoding, recovery, or both, and is amenable to approximations that significantly improve computational cost while retaining fidelity. We illustrate our theory numerically for optimized 5-qubit codes, using the standard [5,1,3] code as a benchmark. Our optimized encoding and recovery yields fidelities that are uniformly higher by 1-2 orders of magnitude against random unitary weight-2 errors compared to the [5,1,3] code with standard recovery. We observe similar improvement for a 4-qubit decoherence-free subspace code.Comment: 4 pages, including 3 figures. v2: new example

    Phase Diagrams for the ν\nu = 1/2 Fractional Quantum Hall Effect in Electron Systems Confined to Symmetric, Wide GaAs Quantum Wells

    Full text link
    We report an experimental investigation of fractional quantum Hall effect (FQHE) at the even-denominator Landau level filling factor ν\nu = 1/2 in very high quality wide GaAs quantum wells, and at very high magnetic fields up to 45 T. The quasi-two-dimensional electron systems we study are confined to GaAs quantum wells with widths WW ranging from 41 to 96 nm and have variable densities in the range of ≃4×1011\simeq 4 \times 10^{11} to ≃4×1010\simeq 4 \times 10^{10} cm−2^{-2}. We present several experimental phase diagrams for the stability of the ν=1/2\nu=1/2 FQHE in these quantum wells. In general, for a given WW, the 1/2 FQHE is stable in a limited range of intermediate densities where it has a bilayer-like charge distribution; it makes a transition to a compressible phase at low densities and to an insulating phase at high densities. The densities at which the ν=1/2\nu=1/2 FQHE is stable are larger for narrower quantum wells. Moreover, even a slight charge distribution asymmetry destabilizes the ν=1/2\nu=1/2 FQHE and turns the electron system into a compressible state. We also present a plot of the symmetric-to-antisymmetric subband separation (ΔSAS\Delta_{SAS}), which characterizes the inter-layer tunneling, vs density for various WW. This plot reveals that ΔSAS\Delta_{SAS} at the boundary between the compressible and FQHE phases increases \textit{linearly} with density for all the samples. Finally, we summarize the experimental data in a diagram that takes into account the relative strengths of the inter-layer and intra-layer Coulomb interactions and ΔSAS\Delta_{SAS}. We conclude that, consistent with the conclusions of some of the previous studies, the ν=1/2\nu=1/2 FQHE observed in wide GaAs quantum wells with symmetric charge distribution is stabilized by a delicate balance between the inter-layer and intra-layer interactions, and is very likely described by a two-component (Ψ311\Psi_{311}) state.Comment: Accepted for publication in Phys. Rev.

    Anisotropic low-temperature piezoresistance in (311)A GaAs two-dimensional holes

    Full text link
    We report low-temperature resistance measurements in a modulation-doped, (311)A GaAs two-dimensional hole system as a function of applied in-plane strain. The data reveal a strong but anisotropic piezoresistance whose magnitude depends on the density as well as the direction along which the resistance is measured. At a density of 1.6×10111.6\times10^{11} cm−2^{-2} and for a strain of about 2×10−42\times10^{-4} applied along [011ˉ\bar{1}], e.g., the resistance measured along this direction changes by nearly a factor of two while the resistance change in the [2ˉ\bar{2}33] direction is less than 10% and has the opposite sign. Our accurate energy band calculations indicate a pronounced and anisotropic deformation of the heavy-hole dispersion with strain, qualitatively consistent with the experimental data. The extremely anisotropic magnitude of the piezoresistance, however, lacks a quantitative explanation.Comment: 4 pages. Submitted to Applied Physics Letter

    Correlated errors can lead to better performance of quantum codes

    Full text link
    A formulation for evaluating the performance of quantum error correcting codes for a general error model is presented. In this formulation, the correlation between errors is quantified by a Hamiltonian description of the noise process. We classify correlated errors using the system-bath interaction: local versus nonlocal and two-body versus many-body interactions. In particular, we consider Calderbank-Shor-Steane codes and observe a better performance in the presence of correlated errors depending on the timing of the error recovery. We also find this timing to be an important factor in the design of a coding system for achieving higher fidelities.Comment: 5 pages, 3 figures. Replaced by the published version. Title change

    Multicomponent fractional quantum Hall states with subband and spin degrees of freedom

    Full text link
    In wide GaAs quantum wells where two electric subbands are occupied we apply a parallel magnetic field or increase the electron density to cause a crossing of the two N=0N=0 Landau levels of these subbands and with opposite spins. Near the crossing, the fractional quantum Hall states in the filling factor range 1<ν<31<\nu<3 exhibit a remarkable sequence of pseudospin polarization transitions resulting from the interplay between the spin and subband degrees of freedom. The field positions of the transitions yield a new and quantitative measure of the composite Fermions' discrete energy level separations. Surprisingly, the separations are smaller when the electrons have higher spin-polarization

    Local Estimates for the Koornwinder Jacobi-Type Polynomials

    Get PDF
    In this paper we give some local estimates for the Koornwinder Jacobi-type polynomials by using asymptotic properties of Jacobi orthogonal polynomials

    Superconducting, Insulating, and Anomalous Metallic Regimes in a Gated Two-Dimensional Semiconductor-Superconductor Array

    Full text link
    The superconductor-insulator transition in two dimensions has been widely investigated as a paradigmatic quantum phase transition. The topic remains controversial, however, because many experiments exhibit a metallic regime with saturating low-temperature resistance, at odds with conventional theory. Here, we explore this transition in a novel, highly controllable system, a semiconductor heterostructure with epitaxial Al, patterned to form a regular array of superconducting islands connected by a gateable quantum well. Spanning nine orders of magnitude in resistance, the system exhibits regimes of superconducting, metallic, and insulating behavior, along with signatures of flux commensurability and vortex penetration. An in-plane magnetic field eliminates the metallic regime, restoring the direct superconductor-insulator transition, and improves scaling, while strongly altering the scaling exponent

    Jump-diffusion unravelling of a non Markovian generalized Lindblad master equation

    Full text link
    The "correlated-projection technique" has been successfully applied to derive a large class of highly non Markovian dynamics, the so called non Markovian generalized Lindblad type equations or Lindblad rate equations. In this article, general unravellings are presented for these equations, described in terms of jump-diffusion stochastic differential equations for wave functions. We show also that the proposed unravelling can be interpreted in terms of measurements continuous in time, but with some conceptual restrictions. The main point in the measurement interpretation is that the structure itself of the underlying mathematical theory poses restrictions on what can be considered as observable and what is not; such restrictions can be seen as the effect of some kind of superselection rule. Finally, we develop a concrete example and we discuss possible effects on the heterodyne spectrum of a two-level system due to a structured thermal-like bath with memory.Comment: 23 page

    Efficient estimation of nearly sparse many-body quantum Hamiltonians

    Full text link
    We develop an efficient and robust approach to Hamiltonian identification for multipartite quantum systems based on the method of compressed sensing. This work demonstrates that with only O(s log(d)) experimental configurations, consisting of random local preparations and measurements, one can estimate the Hamiltonian of a d-dimensional system, provided that the Hamiltonian is nearly s-sparse in a known basis. We numerically simulate the performance of this algorithm for three- and four-body interactions in spin-coupled quantum dots and atoms in optical lattices. Furthermore, we apply the algorithm to characterize Hamiltonian fine structure and unknown system-bath interactions.Comment: 8 pages, 2 figures. Title is changed. Detailed error analysis is added. Figures are updated with additional clarifying discussion
    • …
    corecore